Strong convergence of modified gradient-projection algorithm for constrained convex minimization problems

نویسندگان

  • MING TIAN
  • LIHUA HUANG
چکیده

In this article, a modified gradient-projection algorithm (GPA) is introduced, which combines Xu’s idea of an alternative averaged mapping approach to the GPA and the general iterative method for nonexpansive mappings in Hilbert space introduced by Marino and Xu. Under suitable conditions, it is proved that the strong convergence of the sequences generated by implicit and explicit schemes to a solution of a constrained convex minimization problem which also solves a certain variational inequality. Obtained results extend and improve some existed results. Key–Words: Gradient-projection algorithm, Constrained convex minimization, General iterative method, averaged mapping, nonexpansive mapping, fixed point, variational inequality

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Averaged Mappings and the Gradient-Projection Algorithm

It is well known that the gradient-projection algorithm (GPA) plays an important role in solving constrained convex minimization problems. In this article, we first provide an alternative averaged mapping approach to the GPA. This approach is operator-oriented in nature. Since, in general, in infinite-dimensional Hilbert spaces, GPA has only weak convergence, we provide two modifications of GPA...

متن کامل

Strong convergence theorem for a class of multiple-sets split variational inequality problems in Hilbert spaces

In this paper, we introduce a new iterative algorithm for approximating a common solution of certain class of multiple-sets split variational inequality problems. The sequence of the proposed iterative algorithm is proved to converge strongly in Hilbert spaces. As application, we obtain some strong convergence results for some classes of multiple-sets split convex minimization problems.

متن کامل

Inexact Spectral Projected Gradient Methods on Convex Sets

A new method is introduced for large scale convex constrained optimization. The general model algorithm involves, at each iteration, the approximate minimization of a convex quadratic on the feasible set of the original problem and global convergence is obtained by means of nonmonotone line searches. A specific algorithm, the Inexact Spectral Projected Gradient method (ISPG), is implemented usi...

متن کامل

A General Iterative Method for Constrained Convex Minimization Problems in Hilbert Spaces

It is well known that the gradient-projection algorithm plays an important role in solving constrained convex minimization problems. In this paper, based on Xu’s method [Xu, H. K.: Averaged mappings and the gradient-projection algorithm, J. Optim. Theory Appl. 150, 360-378(2011)], we use the idea of regularization to establish implicit and explicit iterative methods for finding the approximate ...

متن کامل

A Hybrid Gradient-Projection Algorithm for Averaged Mappings in Hilbert Spaces

It is well known that the gradient-projection algorithm GPA is very useful in solving constrained convex minimization problems. In this paper, we combine a general iterative method with the gradient-projection algorithm to propose a hybrid gradient-projection algorithm and prove that the sequence generated by the hybrid gradient-projection algorithm converges in norm to a minimizer of constrain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013